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SI Materials and Methods
Constructing the Allostery Model. For a given protein, the allostery
model defines several effector bound and unbound landscapes
that differ by the size of the allosteric site. The energy function
that defines each landscape is a sum of nonbonded distance terms
that control the attractive interactions between atoms and
bonded terms that maintain proper stereochemistry. The non-
bonded distance terms determine the efficient sampling of the
allosteric transition and vary with the size of the allosteric site.
Interactions involving atoms in the allosteric site, defined as re-
sidues within a radius of the effector ligand (rAS), are given a sin-
gle energy minima corresponding to distances in either the bound
or unbound crystal structure (Fig. 2A). The remaining interac-
tions between atoms have two energetically equivalent minima
corresponding to distances from both crystal structures (Fig. S2).
Changing rAS modulates the strength of the allosteric signal. An
order parameter for allostery is obtained by changing rAS while
restraining the allosteric site first to the unbound and then to the
bound structure. In other words, changing rAS allows interpola-
tion between the effector bound and unbound landscapes (Fig. 1).
The rAS varies between 4 and 20 Å.

In our allostery model, a landscape is given by a potential
energy function that is a sum of bonded and nonbonded terms
implemented using MODELLER (1), following CHARMM (2):
Ei ¼ Ebonded þEnonbonded. Correct stereochemistry is achieved by
the same terms MODELLER uses for standard comparative
modeling: Ebonded ¼ Ebond þEangle þEdihedral þEimproper dihedral.
To induce allostery, we add a truncated Gaussian distance term
to the soft-sphere atom overlap term, to obtain total nonbonded
energy: Enonbonded ¼ Esoft sphere þEdistance. This distance term re-
sults in efficient sampling of the allosteric transition and is given

by a sum over all heavy atom pairs more than two residues apart
in sequence and less than 11-Å apart in distance. The energy
function for a single atom pair has one or two minima, depending
on the distance to the effector (Fig. S2). For an interaction invol-
ving atoms in the allosteric site (within a cutoff distance to the
effector, rAS), the function has one energetic minimum corre-
sponding to the distance in either the effector bound or unbound
structure. For all other pairwise interactions, the function has two
minima corresponding to the distances in the bound and unbound
structures. The energy and width of the distance interaction was
parameterized to reproduce experimental folding temperatures.
Varying rAS, an order parameter for allostery, changes how the
distance energy is distributed across the structure, thereby driving
the simulation to sample different regions of the conformational
space relevant to the allosteric transition.

The nonbonded distance energy is a sum of pairwise distance
terms εðrijÞ applied to all atoms in amino acids that are separated
in sequence by at least two residues and are in contact in any of
the crystal structures:

Edistance ¼ ∑
i residueindex >j residueindex þ2

ϵðrijÞδðr tijÞ

in which δðrij tÞ ¼ 1 if the distance between the side-chain centers
of mass is less than 11 Å and δðrij tÞ ¼ 0 otherwise. The pairwise
distance term is found by taking the negative logarithm of a prob-
ability density function:

ϵðrijÞ ¼ −RT log
�
∑

Nij

t

P trG
t ðrijÞ

�
;

in which P trG
t ðrijÞ is a truncated Gaussian. The probability density

function is a sum of truncated Gaussians, each Gaussian pertain-
ing to a maximum at the distance (rij

t) between atoms i and j
taken from Nij templates (Fig. S2). Each truncated Gaussian
is given by

PtrG
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that is an interpolation between a Gaussian function (PG
t ) and a

constant value given by gmin. These terms are given by
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in which σij is the standard deviation and rmax
ij is the distance be-

tween atoms i and j that yields the maximum probability. The
truncated Gaussian function limits information taken from any
template, which is equivalent to setting the energy of a contact
between two atoms. This contact energy, given by δE, was para-
meterized empirically (along with the distance cutoff) by compar-
ing the results in the current study to experimental data from
folding studies (3–6) and studies on the proteins’ functional be-
havior in solution (7, 8). The truncated Gaussian form allows the
protein to interconvert between allosteric states. By setting the
appropriate pairwise contact energy, the unfolding temperatures
of the three proteins are approximately correct (Fig. S3):

δE ¼ 3.6ðNres∕NcontactsÞ;

in whichNres is the number of residues in the target sequence and
Ncontacts is the number of atom–atom nonbonded contacts. The
equation for δE ensures an average energy per residue that is 2 to
3 times the energy required to rotate a backbone dihedral angle.
Similar energetic ratios for balancing backbone rigidity to inter-
residue interactions have been used to successfully predict pro-
tein folding routes in previous models (9–12). The standard
deviation of the Gaussian function is small to strongly restrain
atoms in the backbone, but is given systematically larger values
for interactions involving side chains and for interactions invol-
ving residues that are unstructured in one or more of the allos-
teric states. The standard deviation is given by

σij ¼ 2.0ðNtot∕NijÞ2θSC∕BB
ij ;

in whichNtot is the total number of allosteric states used to define
the landscape andNij is the number of templates that are used to
define the interaction between atoms i and j. Interactions are
scaled using θSC∕BB

ij so contacts between backbone atoms have
a value of 1.0, side-chain–backbone contacts is 1.5, and side-
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chain–side-chain contacts is 1.52. The factor 1.5 arises due to the
observation that side-chain atoms are approximately 50% more
mobile than backbone atoms in molecular dynamics trajectories
as well as in ensembles generated from NMR data (13, 14).

We varied a number of parameters within a wide range, with-
out affecting our conclusions based on the simulations; the abso-
lute rates of motions within the simulation change but the relative
rates of motions remain similar (Fig. 3 and Fig. S3). Monitoring
the variability of results as a function of rAS, which provides an
order parameter for allostery, allows an estimate for how well
each landscape is sampled.

Simulations. The simulation protocol in MODELLER is set up to
most efficiently sample regions of the energy landscape that are
important for allostery by initializing structures along relevant re-
gions of the energy landscape, similar to variational calculations
in protein folding (15). The initial structure is generated by first
aligning the two allosteric structures; second by interpolating the
positions of each atom between the two allosteric states; and
third, randomizing each atom by 2 Å. The structures are first
relaxed with conjugate gradient steps using only the bonded en-
ergy term. Conjugate gradient relaxation is then performed in
successive steps of increasing strength in absence of the soft-
sphere energy. Molecular dynamics at 300 K is used to optimize
the structure as the strength of the soft-sphere energy term is
gradually increased. Further molecular dynamics at gradually
increasing temperatures equilibrates the structure until the de-
sired sampling temperature is reached, which is 300 K for the al-
lostery model. The bulk of computational time is spent sampling
the landscape using constant temperature molecular dynamics
with 3 fs time steps and velocity rescaling every 200 steps.
Sampling for each landscape involves 30 simulations that are first
equilibrated and then followed by a 6-ns run. The total sampling
for each protein is more than 1.08 ms and over 2 million
structures.

Ensemble Analysis. In the allostery model, simulation trajectories
sampling each landscape (Ei) are combined for analysis. For most
results, trajectories representing a single landscape are combined
(NASi ¼ 1), but for pseudocorrelation maps, data from all trajec-
tories are combined (NASi ¼ 6). We sample related landscapes
that differ by the size of the allosteric site (rAS) and whether

the allosteric site is in the bound or unbound configuration.
The probability for a given structure is

PðiÞ ¼ exp½−Ei∕σASi �
NASiZASi

;

whereNASi is the number of different landscapes used in the ana-
lysis. Structures are weighted using the energy for each sampled
landscape (Ei) and the standard deviation of the energy for each
landscape (σASi). There is likewise a separate partition function
for each landscape:

ZASi ¼ ∑
i

exp½−Ei∕σASi �:

Structural Analysis. We compare structures from simulations to
crystal structures using pairwise distance similarity scores (11,
12, 15). For a given structure, an overall fold similarity to any
other structure t is given by Qt, reflecting the fraction of similar
contacts:

Qt ¼ 1

N ∑
N

i<jþ1

exp½−ðrij − r tijÞ2∕2ðσijÞ2�

where rij is the distance between the centers of mass of side
chains i and j, σij ¼ 2.0, and the sum is over all pairs of atoms
within 11 Å of each other for which ji − jj > 1. To determine if
a simulated structure is more similar to the effector bound
(tþ) or the effector unbound (t−) crystal structures, we calculate

Qdiff ¼
Qtþ −Qt−

ð1 − ΔQÞ

where ΔQ is the structural similarity (Qt) between the two allos-
teric crystal structures. Restricting the calculation to a subset of
contacts, such as QdiffðXÞ, results in a score for region X . Also,
QIdiffðXÞ refers to a score of the interface between X and the
remaining protein and QIdiffðX toY Þ refers to a score of the in-
terface between X and Y .
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Fig. S1. Structural similarity metrics for the regulated sites are shown for representative simulation trajectories: (A and B) CaGFP, (C and D) maltose binding
protein, and (E and F) CSL transcription factor. Red curves are from simulations in the effector bound state and green curves are from simulations in the effector
unbound state. The plots in the left column are from simulations with a large rAS (roughly half the distance between the allosteric and regulated sites) and
represent the effector bound/unbound landscapes most consistent with experiment. The plots in the right column are from simulations with a small rAS

(roughly 5 Å) and represent an interpolation between the landscapes represented on the left. Some trajectories involve interconversions between substates,
including a partial folding transition for CaGFP.

Fig. S2. (A) Plot of Edistance for several contacts with two minima. The value rij
t1 is the distance between atoms i and j in template t1 and σij corresponds to the

width of the Gaussian for that contact. (B) A sum of two truncated Gaussian probability density functions that correspond to the energy plot in A. Several
parameters in the truncated Gaussian probability density function are depicted.
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Fig. S3. The unfolding temperatures of CSL transcription factor (CSL), maltose binding protein (MBP), and the GFP domain of CaGFP are accurately predicted.
Each point represents the fraction of folded proteins after 10 6-ns simulations in which different distance cutoffs are used: 9 (+), 11 (□), and 15 Å (○). Because
unfolding likely occurs much more slowly than 6 ns, these curves represent an approximate upper bound for unfolding within the model. The experimental
unfolding temperatures for MBP and GFP are 345 (3) and 356 K (4) respectively. Guanidine unfolding experiments also seem to place the stability of CSL in
between MBP and GFP (5, 6). A structure is defined as folded if all of the domains have a Qt with respect to the native crystal structure above 0.5.
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Fig. S4. Correlations of several computational metrics with the observed experimental coupling for CaGFP andmaltose binding protein (MBP). Computational
metrics are presented such that positive correlation implies accuracy. Ligand-induced cooperativity (LIC) shows the best overall correlation. PC (RS, AS), which
refers to pseudocorrelation (Fig. 4) between the allosteric site (AS) and regulated site (RS), shows good correlation for MBP but poor correlation for CaGFP. P
overlap, which refers to the overlap of QIdiff (Fig. 3), also shows good correlation because a small P overlap implies large degrees of coupling. Qi(X-ray), a
residue-specific structural similarity measurement applied between the effector bound and unbound crystal structures (i.e., ΔQi), fails to be well correlated
with experimental coupling. Experimental coupling for CaGFP is defined as the average absolute deviation of fluorescence (Table S1). Experimental coupling
for MBP is defined as j logðKwt

d ∕Kmut
d Þj. Correlations for CaGFP are shown without the data point for residue 377 because this residue is contained in the

allosteric site in the simulations and is therefore predicted to have arbitrarily large coupling to effector binding.
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Fig. S5. Pseudocorrelation maps (PCt−ðj; iÞ) are obtained by assigning all residues into the effector bound or effector unbound substate using QIdiff. Colors
along the x and y axes correspond to domains, which are not contiguous in these proteins. For CaGFP, green is the calmodulin domain and blue is the GFP
domain. For maltose binding protein (MBP), green and blue represent the two domains on either side of the effector binding site. For CSL transcription factor,
green is the β-trefoil domain, blue is the Ig-like domain containing the regulated site, and red is the Ig-like domain that does not participate in the allostery.
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