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Proteins have often evolved sequences so as to acquire the ability
for regulation via allosteric conformational change. Here we inves-
tigate how allosteric dynamics is designed through sequences with
nonlinear interaction features. First, for 71 allosteric proteins of
which two, open and closed, structures are available, a statistical
survey of interactions using an all-atom model with effective sol-
vation shows that those residue contact interactions specific to one
of the two states are significantly weaker than are the contact
interactions shared by the two states. This interaction feature in-
dicates there is underlying sequence design to facilitate conforma-
tional change. Second, based on the energy landscape theory, we
implement these interaction features into a new atomic-interac-
tion-based coarse-grained model via a multiscale simulation proto-
col (AICG). The AICG model outperforms standard coarse-grained
models for predictions of the native-state mean fluctuations and
of the conformational change direction. Third, using the new mod-
el for adenylate kinase, we show that intrinsic fluctuations in one
state contain rare and large-amplitude motions nearly reaching the
other state. Such large-amplitude motions are realized partly by
sequence specificity and partly by the nonlinear nature of contact
interactions, leading to cracking. Both features enhance conforma-
tional transition rates.

multiscale simulations ∣ energy decomposition ∣ allosteric motions ∣
sequence design principle ∣ interaction nonlinearity

Proteins have evolved sequences that allow them to meet many
requirements. For enzymes, two obvious requirements are

foldability and catalytic ability. In the cellular context, a third
requirement is regulation: Many proteins need to turn their
activities on and off by changing conformation upon binding to
their regulatory molecules or by posttranslational modification,
i.e., the allosteric effect (1, 2). What are the design principles
for meeting these requirements? It has been understood that
foldability can be accomplished by having an overall funnel-like
energy landscape: the principle of minimum frustration (3).
Catalytic requirements seem to arise case-by-case, but precise
spatial arrangement of catalytic residues is clearly of central
importance. As for the third requirement of regulation, however,
how sequences and structures are designed to facilitate confor-
mational change is less clear. To enable conformational changes,
proteins need to make relatively large-amplitude fluctuations
toward specific directions. Here, we address the design principles
for rotein allostery using an all-atom-based simplified force
field.

In native-basin dynamics, it has been well established that the
quasi-harmonic fluctuations are encoded largely in the three-
dimensional architecture, as illustrated by the structure-based
elastic network models (ENMs) (4–8). The relative root mean
square fluctuations (RMSF) in the native state can be accurately
reproduced by the Gaussian network model (5), a member of the
ENM family. The direction of conformational change from the

open (apo) state can usually be represented well by a few low-
frequency modes of the anisotropic network model (6), another
version of the ENM family, constructed at the open state.

Mounting evidence, however, suggests that protein architec-
ture alone is not sufficient, but that sequence specificities also
play crucial roles in encoding motions (9–11). Some mutations
that do not modify catalysis or the native structure alter func-
tional behavior dramatically (11, 12). A recent theoretical study
has shown that the interactions within a protein can be locally
frustrated due to the restraints imposed by functions (13), sug-
gesting that functional requirements on the sequence may con-
flict with the optimal conditions for folding. Indeed, a survey
of allosteric proteins shows that hinge regions are located near
regions of high frustration according to a residue-based simplified
energy function (14). Clearly, functional dynamics is indeed
modulated by the detailed physicochemical features of the spe-
cific sequences.

Protein motions modeled by elastic network models are har-
monic, but the large-amplitude fluctuations required for chemi-
cally relevant conformational change are anharmonic (15). We
expect nonlinear effects come into play to facilitate large-ampli-
tude fluctuations in the native-basin dynamics, especially for the
allosteric proteins. Clearly when proteins pass through their tran-
sition states for rearrangement, nonlinearity should be of central
importance.

To address these issues, technically we need a simulation mod-
el that can take into account sequence-specific and nonlinear
interactions and that is efficient enough to simulate large-ampli-
tude fluctuations for many proteins. Conventional all-atom force-
field models can be used, but their application to large-amplitude
motions for many proteins is difficult. On the other hand, the
perfect funnel model (often called Go models) (16–18), devel-
oped based on the energy landscape theory (3), can efficiently
simulate large-amplitude fluctuations, but normally it does not
take into account the chemical nature of interactions. Here, com-
bining an all-atom description with the perfect funnel model, we
develop a coarse-grained (CG) model that explicitly uses atomic
interactions obtained via a multiscale protocol.

In this work, we start with a statistical survey of residue-pair-
wise interaction energies computed from an all-atom model with
implicit solvation both for a set of single-domain proteins and
for a set of allosteric proteins. For the latter, we find a simple
but robust feature in the distribution of interaction energies,
which facilitates conformational changes. This observation paral-
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lels results obtained with a simplified residue-level model (14).
Then, to take into account this feature, we developed an atomic-
interaction-based coarse-grained (AICG) model via a multiscale
method. We verify that this model can predict both the native-
basin mean fluctuations and the orientation of conformational
change more accurately than either ENMs or the standard pure-
structure-based models do. Using adenylate kinase as an exam-
ple, we find that nonlinear effects and cracking allowed by the
pairwise contact interactions, together with the above-mentioned
local frustration, enables allosteric proteins to exhibit rare and
large-amplitude fluctuations nearly up to the opposite state basin.

Result and Discussions
Specificity in Contact Energies. We start with statistical surveys
of residue-pairwise interaction (contact) energies. To estimate
contact energies at the native structure, we employed an energy
decomposition scheme with the AMBER force field and an
implicit solvent model (19) (see Materials and Methods).

First, for a set of 40 single-domain proteins (termed the train-
ing set), we calculated the contact energies for every residue pair.
We find that the energy distribution clearly exhibits an exponen-
tial distribution up to the lower bound −15 kcal∕mol (Fig. 1A and
SI Appendix, Fig. S1A). The precise origin of such simple expo-
nential distribution law, however, is unclear, although it may re-
flect the selection temperature (20). We also note that the contact
energies are only weakly correlated with the number of atomic
contacts between the residue pairs (Fig. 1A, Inset) and the
Cα–Cα distances (SI Appendix, Fig. S1B).

Next, we performed the same statistical survey for a set of 71
allosteric proteins (termed the allostery set) which have at least

two well-defined states: the open and the closed states. We clas-
sified the contacts into two categories, the contacts formed only in
one of the two states (state-specific contacts) and those contacts
formed in both states (shared contacts). Fig. 1B shows the contact
energy distributions of the two sets of contacts for adenylate
kinase, a model allosteric protein (10–12, 21–28). To address
the effects of sequence specificity unambiguously, we did not
include interactions with ligands or substrates throughout this
work. Interestingly, the state-specific contacts (red bars) are sig-
nificantly weaker than the shared contacts (black bars). The
shared contacts have a long-tailed energy distribution essentially
the same as that for single-domain proteins (blue curve). In
contrast, the state-specific contact energies are nearly always
weak. Apparently, this feature facilitates conformational change
because the state-specific contacts need to be broken upon con-
formation change.

This pattern is seen not only for adenylate kinase, but also for
all the proteins in the allostery set, as illustrated in Fig. 1C, which
gives the distributions of the contact energies averaged for each
protein in the set. For each protein, the averaged shared contact
was always stronger than the averaged state-specific contacts.
Such a simple but robust interaction feature would provide a gen-
eral principle of sequence design via evolution for allosteric pro-
teins. Moreover, for the case of F1-ATPase (29) which takes the
three distinct conformations of αβ-subunits, we see the same ten-
dency extended to the three categories (SI Appendix, Fig. S2).

One may argue that the difference between the shared and the
state-specific contact energies may come directly from the differ-
ent compositions of amino acids in the two sets. This argument
is partly true in that the amino acid compositions are indeed
biased as in the SI Appendix, Fig. S3; hydrophobic (charged) pairs
are more frequent in the shared (state-specific) contacts. Simi-
larly, one can argue that the Cα–Cα distances may distribute
in different ways in the two contact sets. This argument is also
partly true, as shown in the inset of Fig. 2 and SI Appendix,
Fig. S4. Yet, importantly, even for the same type of amino acid
pairs and at the same Cα–Cα distance, the average contact ener-
gies are different between the shared and the state-specific con-
tact sets (Fig. 2 A and B and SI Appendix, Fig. S5). Thus, the weak
contact energies for the state-specific pairs are encoded by multi-
ple means, the amino acid compositions, the Cα-Cα distances,
and more detailed side-chain interactions.

Finally, we address the enzymatic functional aspect for adeny-
late kinase. Among the shared contact pairs, some contact ener-
gies are quite different in the open and closed states (Fig. 1D).
Many of these contacts involved charged residues which are often
functionally relevant. The contacts that showed the most distinct
energies between the two states (marked by the black circles)
involved at least one of the residues D54, K200, D158, E167,
E162, K50, and D61. All of these are responsible for the substrate
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Fig. 1. Statistical survey of contact energies. (A) Distributions of the contact
energies for all the single-domain proteins in the training set. The inset shows
the correlation between the contact energies and the number of atomic
contacts. (B) Distributions of the contact energies for the state-specific con-
tacts (red) and the shared contacts (black) in adenylate kinase (PDB ID 1AKE
and 4AKE). The blue line is the same distribution as A. (C) Distributions of
the averaged contact energies for the state-specific contacts (red) and the
shared contacts (black) among the allosteric proteins in the allostery set.
(D) Correlation between the contact energies for the shared contacts in
the open and closed states for adenylate kinase. The contacts showing the
most distinct energies between the two states are circled in black. Red, con-
tacts between residues with opposite charges; pink, charged-polar contacts;
green, charged-apolar contacts; cyan, polar-polar contacts; blue, polar-apolar
or apolar-apolar contacts; black, contacts between residues with identical
charges.
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Fig. 2. (A) Average of contact energies as a function of Cα–Cα distances for
the shared contacts (black) and state-specific contacts (red) formed between
the aliphatic residues (A, V, L, I). The corresponding distance distributions are
given in the inset. (B) The average of contact energies as a function of Cα–Cα
distances for the shared contacts (black) and state-specific contacts (red)
formed between the oppositely charged residues.
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binding, the hinge motion, or the catalysis. These results are in
harmony with the observation of the local frustrations in ref. 13,
which are useful for functioning. Contact energies optimal for the
stability in one state can be structurally frustrated in the other
state, which is required for functioning. It is helpful for sculpting
the functional dynamics, so as to make only part of the protein
movable, like a macromachine.

Modeling Protein Motions with Specific Contact Energies and Nonli-
nearity. Now we use the above-characterized atomic-interaction
(AI) based contact energies to model the dynamics of protein
motions. We employed a CG model where each amino acid
was simplified as a bead located at its Cα position, and a potential
function form of refs. 16–18 that is based on the energy landscape
theory and has been applied (26, 27, 30–32). In contrast to the
homogeneous contact strength used in refs. 16–18, which is
represented by a single coefficient in the nonlocal term of the
native interaction, here we generalized the energy function so
that the coefficients depend on residues. The coefficients were
determined by referring to the energies and dynamics of the
all-atom model via a multiscale protocol (SI Appendix Text and
Fig. S6) (33–35). Strengths of contact energies are proportional
to AI contact energies obtained by the AMBER energy decom-
position, and are therefore able to capture the specificity of the
contact energies discussed in the first subsection. Moreover, for
the local potentials, i.e., the angle term and the dihedral term, the
coefficients are dependent on the secondary structure of the
residue. The local and nonlocal interaction weights were tuned
to fit the native-basin mean fluctuations by CG simulations with
those by the all-atom simulations for the 23 proteins in the
training set (the training set sub) (SI Appendix Text and Tables S1
and S2). We call the resulting CG model the AICG model.
Compared with the ENM, the AICG incorporates chemical spe-
cificity and nonlinearity based on the full all-atom force field.

Mean Fluctuations in the Native Basin.We first test the AICGmodel
by comparing the native-state mean fluctuations calculated by the
AICG with those found by the all-atom (AA) simulations. We
estimated the RMSF along the sequence and calculated the cor-
relation coefficient (CC) between the RMSFs by CG simulations
and those by AA simulations. Using a protein CheY (PDB ID
1E6K) as an example, Fig. 3A shows the RMSFs predicted by
the AICG and by the Gaussian network model, which is known
to be the best version among the ENM family for the RMSF
calculation, together with those by AA simulations. Both the
Gaussian network model and AICG approximate the AA RMSFs
reasonably well. Quantitatively, AICG (CC ¼ 0.84) can approx-
imate the RMSFs somewhat better than the Gaussian network
model (CC ¼ 0.72). This result is not so surprising because we
have more parameters in the AICG. For the statistics, we com-
pared the RMSFs for the 30 test-set proteins, which are exclusive
from the training-set proteins. As shown in Fig. 3B (the distribu-
tion) andTable 1 (the average), we see that theAICGoutperforms

the Gaussian network model and the anisotropic network model
in predicting the RMSFs. Such improvements probably arise
from the atomic-based estimate of contact energies as well as
the anharmonic nature of the pairwise energy terms.

Conformational Change Direction.We move on to the investigation
of the conformational change of allosteric proteins. Many years
ago, Tama et al. pointed out that the directions of conformational
change from the open state to the closed state can often be well
represented by a few low-frequency normal modes defined in the
open state (36). Combining this observation with the success of
ENMs to approximate low-frequency normal modes suggests that
the structure alone can encode the conformational change direc-
tion of allosteric proteins to a certain extent. Interestingly, how-
ever, the same analysis often fails in the opposite direction; using
the low-frequency modes in the closed state, one cannot well pre-
dict the directions of conformational change from the closed to
the open states (36).

We tested whether the AICG can predict the direction of con-
formational change for the 71 proteins in the allostery set. Quan-
titatively, the overlaps between the identified low-frequency
modes and the experimentally observed structural difference be-
tween the two states can be used to evaluate the model predic-
tions (SI Appendix). Following ref. 8, we used the maximal
overlap and cumulative overlap among the first several modes
for the assessment. We illustrate the simulation results for ade-
nylate kinase by AICG as well as by the ENM (specifically, the
anisotropic network model) (Fig. 4 A and B). When the open
(apo) state is used as the reference, both the ENM (red in Fig. 4D)
and the AICG (green in Fig. 4D) worked equally well; the lowest
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Table 1. Average CC and SE between the RMSFs derived by AA MD
and by different CG models, including Gaussian network model
(GNM), anisotropic network model (ANM), and AICG model

Models GNM ANM AICG

CC 0.694 0.648 0.758
SE 0.018 0.031 0.021
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Fig. 4. Structures and low-frequency modes of adenylate kinase. (A and B)
Crystal structures of adenylate kinase in the closed state (A) and the open
state (B). (C and D) Overlaps between the distance vector and the low-
frequency modes predicted by anisotropic network model (ANM) (red),
homogeneous AICG (homo AICG) (black), and full AICG (green) using the
closed (C) or open (D) structures as the reference. The cumulative overlaps
are also shown by the solid line (with the same color code). Only the first
10 lowest-frequency modes are shown.
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frequency mode represents ∼80% of the conformational change.
Whereas, when the closed (holo) state is used as the reference,
AICG (green) outperformed the ENM (red, Fig. 4C) (e.g., the
cumulative overlap is improved by around 15.0%).

The improvement was not limited to adenylate kinase, and a
statistical survey for the proteins in the allostery set showed sys-
tematic improvement of the averaged overlaps by the AICG over
the results by the ENM (Table 2 and SI Appendix, Fig. S7). Table 2
shows that the average maximal overlap by the AICG was larger
than that by the ENM by around 8.6% (8.5%) when the closed
(open) structure is used as the reference.

This improvement by the AICG over the ENM may have sev-
eral sources: sequence specificity in contact energies, specificity
in the local rigidity, or nonlinearity in the contact potential. To
identify each contribution, we tested some intermediate models
(SI Appendix, Table S3). The homogeneous AICG model is one
where both contact strengths and local potentials are homoge-
neous (essentially the same as the standard off-lattice Go model;
ref. 16). The heterogeneous-nonlocal AICG model is one where
only the contact strengths are heterogeneous. The (full) AICG
has both heterogeneous contact strengths and heterogeneous
local potentials. From Table 2, we see that the heterogeneity of
the local interaction contributes to the functional fluctuations
in both the open and closed states, whereas the heterogeneity
in the contact interactions is more crucial for the functional fluc-
tuations in the closed state. This result suggests that fluctuations
around the closed state involve the breaking of the state-specific
contacts, which is sensitive to the chemical nature of the residues.
The prominent difference between the homogeneous AICG and
the ENM (Fig. 4 and Table 2) comes from the nonlinearity in the
pairwise contact as opposed to the linear network force and the
linear approximation of the normal mode analysis of the ENM,
directly suggesting the dominant role of local unfolding, or crack-
ing, for the dynamics around the functional states. We note that
the ENM can also be improved by introducing interaction hetero-
geneity to the force constants of the ENM energy function, as in
Yang et al. (8).

Rare and Large-Amplitude Fluctuations of Adenylate Kinase.We next
focus on rare and large-amplitude fluctuations of allosteric pro-
teins. We illustrate them for the fluctuations in the closed state of
adenylate kinase. Fig. 5A plots the rmsds from the closed (x axis)
and from the open (y axis) states of simulated samples by hetero-
geneous-nonlocal AICG (black dots). Because it is an ensemble
for the closed state, the majority of samples had small rmsds
(∼2 Å) from the closed state, whereas the mean rmsd from
the open state was ∼7 Å. Importantly, the mean fluctuations
by AICG agree with those by AA results in absolute scale (similar
to Fig. 3A). In Fig. 5A, we observe that the large-deviation data
are highly biased toward the open state (decreases in the rmsd
from the open state up to ∼4 Å). Generally, the conformation
space of a given rmsd is exponentially growing with the rmsd
value and thus random fluctuations always tend to increase
rmsds, and thus the fluctuations biased to lower rmsd here is
highly nontrivial. We note that the AICG was constructed purely
using the closed, but not the open, state structural informa-

tion. Quantitatively, the probability distribution calculated by an
umbrella sampling (37) shows that, with the probability 10−6, the
protein can approach ∼3.5 Å from the open state (Fig. 5B)
(SI Appendix).

Next, we address what features cause such biased large-ampli-
tude fluctuations. We employed a variant of AICG with a harmo-
nically truncated contact potential (SI Appendix Text and Fig. S8)
(harmonic AICG, red dots in Fig. 5A) as well as the homogeneous
AICG (blue dots), of which the local potentials are identical to
that of the heterogeneous-nonlocal AICG. The harmonic AICG
exhibited markedly reduced fluctuations (rmsd only reach 5.8 Å
with the probability 10−6). The homogeneous AICG, which al-
lows cracking, shows modest fluctuations (rmsd reaches 5 Å with
the probability 10−6), which are larger than those of the harmonic
AICG, but are much smaller than those predicted by heteroge-
neous-nonlocal AICG. These results indicate that both the non-
linearity and the sequence specificity contribute to the observed
large-amplitude fluctuations.

We further monitor large-amplitude motions of the protein by
investigating the response to an applied perturbation. Here, for
the closed state of adenylate kinase, we applied a pulling poten-

Table 2. Average maximal overlap (MO) and cumulative overlap (CO) among the first five modes by
anisotropic network model (ANM), full AICG model (full), homogeneous AICG model (homo), and
heterogeneous-nonlocal AICG model (hete-nloc) based on the allosteric proteins in allostery set

ENM AICG

Models ANM Full Homo Hete-nloc

Open → closed MO 0.471 (0.028) 0.556 (0.027) 0.528 (0.029) 0.549 (0.029)
CO 0.594 (0.030) 0.675 (0.028) 0.647 (0.029) 0.657 (0.029)

Closed → open MO 0.429 (0.025) 0.515 (0.027) 0.469 (0.027) 0.499 (0.028)
CO 0.555 (0.028) 0.643 (0.028) 0.604 (0.029) 0.629 (0.030)

Corresponding SEs are listed in the brackets.
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Fig. 5. Rare and large-amplitude fluctuations in closed state of adenylate
kinase. (A) Scattering plot of the rmsd from the closed state (x axis) and
rmsd from the open state (y axis) with harmonic AICG (harmonic) (red),
homogeneous AICG (homo) (blue), and the heterogeneous-nonlocal AICG
(hete-nloc) (black). (B) Distribution of the rmsd from the open state by
the three models. (C) Average rmsds from the open and closed states as
a function of the strength of the pulling potential. The results with the
randomly heterogeneous interactions were also shown (dashed lines).
(D) Distributions of the fraction of native contacts Q for the NMP
(red), LID (blue), and core domains (black) by using the homogeneous
AICG (dashed lines) and heterogeneous-nonlocal AICG (solid lines). The
green arrow in A indicates the direction of the conformation change from
the closed to open states.
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tial toward the open state, and observed the mean rmsds as a
function of the strength of the pulling potential (SI Appendix).
The mean rmsd curves show marked differences (Fig. 5C).
The heterogeneous-nonlocal AICG (black curve) shows a transi-
tion from the closed state to nearly open states at the smallest
strength of the pulling potential, and the homogeneous AICG
(blue) followed it at a larger strength, whereas the harmonic
AICG does not make any transition at all, of course (red). If the
interaction heterogeneity is introduced randomly, the resulted
transition curve was almost identical to that of the homogeneous
AICG (dashed line in Fig. 5C), showing the importance of
specifically designed sequence heterogeneity that promotes the
rapid breaking of state-specific contacts.

We also looked into the structural aspects of fluctuations
of adenylate kinase, which has three domains, core domain,
ATP binding domain (called LID), and AMP binding domain
(called NMP), linked by two hinges (Fig. 4 A and B). The free
energy surface described in terms of the two hinge angles
(SI Appendix, Fig. S9) shows the degree of fluctuation in the
two hinge motions. First, it shows that fluctuations in the closed
state are markedly smaller than those in the open state. Second,
both the nonlinear nature and sequence-specific features in the
heterogeneous-nonlocal AICG enhance hinge motions. Fluctua-
tions in the closed state obtained by the heterogeneous-nonlocal
AICG and the homogeneous AICG, but not by the harmonic
AICG, are inherently larger in the LID-core hinge than in the
NMP-core hinge. The free energy surface indicates that upon
closing, two pathways are possible, but the pathway in which
the LID domain closes first is more favorable, which is consistent
with Lu and Wang (27, 28). In contrast, upon opening, the LID
domain always opens before the NMP domain. Fig. 5D plots
fluctuations in each domain by homogeneous AICG and hetero-
geneous-nonlocal AICG models, showing that sequence specifi-
city, but not the structure alone, makes the NMP domain more
fragile than the LID domain. The core domain is, as expected,
more rigid primarily by its structure. This result is reminiscent
of recent experimental work which shows that the thermal adap-
tations of the catalytic activity of adenylate kinase from Bacillus
are mainly contributed by the sequence changes in the LID and
NMP domains instead of the hinge or core domain (12).

The same analysis in the open state of adenylate kinase shows
similar trends, but sequence-specific and nonlinear effects are
much weaker (SI Appendix, Fig. S10). Thus, fluctuations in the
open state are dominated by quasi-harmonic normal modes that
are mostly determined by the open structure.

A trajectory that exhibited large-amplitude fluctuations is
shown as a series of snapshots in SI Appendix, Fig. S11 and as
in Movie S1 and suggests a particular cracking pattern. The local
unfolding for the contacts between the NMP and core domains is
coupled to the opening of the LID domain to some extent
(SI Appendix, Figs. S11 and S12).

Sequence Specificity in Conformational Hopping. So far we have
reported on the fluctuations in one basin. Now we address
how such sequence-designed large-amplitude fluctuations in
each basin promote the complete conformational transitions
between the two basins. We implemented the AICG in the multi-
ple-basin potential (30) (SI Appendix) and simulated reversible
conformational transitions for adenylate kinase (Fig. 6). We see
that the heterogeneous-nonlocal AICG enables more frequent
transitions than does the homogeneous AICG (Fig. 6 A and B),
suggesting that sequence specificity indeed does facilitate confor-
mational transitions. Decomposing the free energy into energy
and entropic contribution, we see that a lower free energy barrier
predicted by the heterogeneous-nonlocal AICG (Fig. 6C) arises
from the reduction in energy contribution to the barrier by
∼8.0 kcal∕mol (Fig. 6D), which is thus a designed sequence
feature. Partial unfolding as monitored by the entropy increase

is also reduced for the designed sequence (Fig. 6D). The inter-
actions designed by the specific sequence lead to more frequent
conformation transitions and simultaneously allow for relatively
well-defined transition pathways. Such a feature may contribute
to the efficiency and robustness of the functional dynamics.

Materials and Methods
Energy Decomposition. The contact energies were calculated by the energy
decomposition strategy (34, 35, 38), where the atomistic energy of a protein
is decomposed into the interactions between the atom pairs. The residue–
residue contact energies were calculated by summing the corresponding
interactions of the atom pairs. The AMBER force field ff99SB and the general-
ized Born/surface area implicit solvation model were used for the calculations
of the atomistic energies (19, 39). For more details, refer to the SI Appendix,
in which we also discussed the possibility to model the contact energies based
on the regressions of atomic contact features (SI Appendix, Fig. S13 and
Table S4).

Atomic-Interaction-Based Coarse-Grained Model. The energy function of the
AICG was taken from the perfect funnel model (16–18). The nonlocal inter-
actions were weighted according to the contact energies calculated by the
energy decomposition. The average strength of the local interactions and
the nonlocal interactions were optimized by matching the fluctuations
calculated by the all-atom simulations (33, 34) (SI Appendix Text, Figs. S6
and S14–S16).

Simulation Details. Here, all CG simulations were conducted by CafeMol
(http://www.cafemol.org/). The all-atom simulations were conducted by
AMBER 10 (19). The details for simulationmethod and data analysis are in the
SI Appendix.

Dataset. Four protein datasets were used, the training set (40 single-domain
proteins), the training set sub (23 proteins from the training set), the test set
(30 proteins), and the allostery set (71 allosteric proteins, each with two
functional states). The details can be found in the SI Appendix.
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Fig. 6. Conformational transition of adenylate kinase. (A and B) Represen-
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